Improving Social Awareness Through DANTE: A Deep Affinity Network for Clustering Conversational Interactants.

We propose a data-driven approach to detect conversational groups by identifying spatial arrangements typical of these focused social encounters. Our approach uses a novel Deep Affinity Network (DANTE) to predict the likelihood that two individuals in a scene are part of the same conversational group, considering their social context. The predicted pair-wise affinities are then used in a graph clustering framework to identify both small (e.g., dyads) and large groups. The results from our evaluation on multiple, established benchmarks suggest that combining powerful deep learning methods with classical clustering techniques can improve the detection of conversational groups in comparison to prior approaches. Finally, we demonstrate the practicality of our approach in a human-robot interaction scenario. Our efforts show that our work advances group detection not only in theory, but also in practice.

The practice of social distancing during the COVID-19 pandemic resulted in billions of people quarantined in their homes. In response, we designed and deployed VectorConnect, a robot teleoperation system intended to help combat the effects of social distancing in children during the pandemic. VectorConnect uses the off-the-shelf Vector robot to allow its users to engage in physical play while being geographically separated. We distributed the system to hundreds of users in a matter of weeks. This paper details the development and deployment of the system, our accomplishments, and the obstacles encountered throughout this process. Also, it provides recommendations to best facilitate similar deployments in the future. We hope that this case study about Human-Robot Interaction practice serves as inspiration to innovate in times of global crises.


Connecticut Post

Yale News